dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:35:09Z
dc.date.available2018-11-26T17:35:09Z
dc.date.created2018-11-26T17:35:09Z
dc.date.issued2017-01-01
dc.identifierStatistics. Abingdon: Taylor & Francis Ltd, v. 51, n. 4, p. 824-843, 2017.
dc.identifier0233-1888
dc.identifierhttp://hdl.handle.net/11449/162977
dc.identifier10.1080/02331888.2017.1327532
dc.identifierWOS:000405210100007
dc.identifierWOS000405210100007.pdf
dc.identifier1621269552366697
dc.identifier0000-0002-2445-0407
dc.description.abstractThe Generalized gamma (GG) distribution plays an important role in statistical analysis. For this distribution, we derive non-informative priors using formal rules, such as Jeffreys prior, maximal data information prior and reference priors. We have shown that these most popular formal rules with natural ordering of parameters, lead to priors with improper posteriors. This problem is overcome by considering a prior averaging approach discussed in Berger et al. [Overall objective priors. Bayesian Analysis. 2015;10(1):189-221]. The obtained hybrid Jeffreys-reference prior is invariant under one-to-one transformations and yields a proper posterior distribution. We obtained good frequentist properties of the proposed prior using a detailed simulation study. Finally, an analysis of the maximum annual discharge of the river Rhine at Lobith is presented.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationStatistics
dc.relation0,726
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectBayesian analysis
dc.subjectGeneralized gamma distribution
dc.subjectJeffreys prior
dc.subjectReference prior
dc.titleBayesian analysis of the generalized gamma distribution using non-informative priors
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución