dc.contributorUniv Vigo
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:10:32Z
dc.date.available2018-11-26T17:10:32Z
dc.date.created2018-11-26T17:10:32Z
dc.date.issued2017-03-01
dc.identifierJournal Of Computational And Applied Mathematics. Amsterdam: Elsevier Science Bv, v. 312, p. 58-64, 2017.
dc.identifier0377-0427
dc.identifierhttp://hdl.handle.net/11449/162133
dc.identifier10.1016/j.cam.2015.11.017
dc.identifierWOS:000387297900007
dc.identifierWOS000387297900007.pdf
dc.description.abstractAn algorithmic approach for generating generalised Zernike polynomials by differential operators and connection matrices is proposed. This is done by introducing a new order of generalised Zernike polynomials such that it collects all the polynomials of the same total degree in a column vector. The connection matrices between these column vectors composed by the generalised Zernike polynomials and a family of polynomials generated by a Rodrigues formula are given explicitly. This yields a Rodrigues type formula for the generalised Zernike polynomials themselves with properly defined differential operators. Another consequence of our approach is the fact that the generalised Zernike polynomials obey a rather simple partial differential equation. We recall also how to define Hermite Zernike polynomials. (C) 2015 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal Of Computational And Applied Mathematics
dc.relation0,938
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectGeneralised Zernike polynomials
dc.subjectRodrigues-type formula
dc.subjectOrdering of Zernike polynomials
dc.subjectBivariate orthogonal polynomials
dc.subjectHermite-Zernike polynomials
dc.titleRecursive computation of generalised Zernike polynomials
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución