dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2018-11-26T16:32:49Z
dc.date.available2018-11-26T16:32:49Z
dc.date.created2018-11-26T16:32:49Z
dc.date.issued2016-06-01
dc.identifierJournal Of Mathematical Chemistry. New York: Springer, v. 54, n. 6, p. 1287-1295, 2016.
dc.identifier0259-9791
dc.identifierhttp://hdl.handle.net/11449/161457
dc.identifier10.1007/s10910-016-0621-z
dc.identifierWOS:000374995000006
dc.identifierWOS000374995000006.pdf
dc.description.abstractIt is shown that analytically soluble bound states of the Schrodinger equation for a large class of systems relevant to atomic and molecular physics can be obtained by means of the Laplace transform of the confluent hypergeometric equation. It is also shown that all closed-form eigenfunctions are expressed in terms of generalized Laguerre polynomials. The generalized Morse potential is used as an illustration.
dc.languageeng
dc.publisherSpringer
dc.relationJournal Of Mathematical Chemistry
dc.relation0,332
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMorse potential
dc.subjectSingular potential
dc.subjectLaplace transform
dc.subjectConfluent hypergeometric equation
dc.titleA large class of bound-state solutions of the Schrodinger equation via Laplace transform of the confluent hypergeometric equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución