dc.contributor | Univ Western Sao Paulo | |
dc.contributor | Big Data Brasil | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T16:27:55Z | |
dc.date.available | 2018-11-26T16:27:55Z | |
dc.date.created | 2018-11-26T16:27:55Z | |
dc.date.issued | 2015-01-01 | |
dc.identifier | 2015 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 76-79, 2015. | |
dc.identifier | 2153-6996 | |
dc.identifier | http://hdl.handle.net/11449/161290 | |
dc.identifier | WOS:000371696700020 | |
dc.description.abstract | Sequential learning-based pattern classification aims at providing more accurate labeled maps by adding an extra step of classification using an augmented feature vector. In this paper, we evaluated the robustness of Optimum-Path Forest (OPF) classifier in the context of land-cover classification using both satellite and radar images, showing OPF can benefit from sequential learning theoretical basis. | |
dc.language | eng | |
dc.publisher | Ieee | |
dc.relation | 2015 Ieee International Geoscience And Remote Sensing Symposium (igarss) | |
dc.rights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Land-cover classification | |
dc.subject | Optimum-Path Forest | |
dc.subject | Sequential Learning | |
dc.title | LAND-COVER CLASSIFICATION THROUGH SEQUENTIAL LEARNING-BASED OPTIMUM-PATH FOREST | |
dc.type | Actas de congresos | |