dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorICTP Int Ctr Theoret Phys
dc.date.accessioned2018-11-26T16:19:30Z
dc.date.available2018-11-26T16:19:30Z
dc.date.created2018-11-26T16:19:30Z
dc.date.issued2016-01-01
dc.identifierJournal Of Cosmology And Astroparticle Physics. Bristol: Iop Publishing Ltd, n. 1, 19 p., 2016.
dc.identifier1475-7516
dc.identifierhttp://hdl.handle.net/11449/161194
dc.identifier10.1088/1475-7516/2016/01/006
dc.identifierWOS:000369734300006
dc.identifierWOS000369734300006.pdf
dc.description.abstractDark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z(2) symmetry, the seemingly leading annihilating channel, i.e. 3-to- 2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, a la freeze-in. This scenario is exempli fied in the context of the Singlet Scalar dark matter model.
dc.languageeng
dc.publisherIop Publishing Ltd
dc.relationJournal Of Cosmology And Astroparticle Physics
dc.relation1,089
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectdark matter theory
dc.subjectparticle physics - cosmology connection
dc.titleZ(2) SIMP dark matter
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución