dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorNatl Acad Sci Ukraine
dc.date.accessioned2018-11-26T16:19:23Z
dc.date.available2018-11-26T16:19:23Z
dc.date.created2018-11-26T16:19:23Z
dc.date.issued2015-12-01
dc.identifierTopological Methods In Nonlinear Analysis. Torun: Juliusz Schauder Ctr Nonlinear Studies, v. 46, n. 2, p. 697-715, 2015.
dc.identifier1230-3429
dc.identifierhttp://hdl.handle.net/11449/161166
dc.identifierWOS:000368961400009
dc.identifierWOS000368961400009.pdf
dc.description.abstractIn this paper we study functions and vector fields with isolated singularities on a C(CPn)-singular manifold. In general, a C(CPn)-singular manifold is obtained from a smooth (2n+1) -manifold with boundary which is a disjoint union of complex projective spaces CPn U center dot center dot center dot UCPn and subsequent capture of the cone over each component CPn of the boundary. We calculate the Euler characteristic of a compact C(CPn)-singular manifold M2n+1 with finite isolated singular points. We also prove a version of the Poincare Hopf Index Theorem for an almost smooth vector field with finite number of zeros on a C(CPn)-singular manifold.
dc.languageeng
dc.publisherJuliusz Schauder Ctr Nonlinear Studies
dc.relationTopological Methods In Nonlinear Analysis
dc.relation0,710
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSemi-free circle action
dc.subjectmanifold
dc.subjectS-1-invariant Bott function
dc.subjectMorse number
dc.subjectPoincare-Hopf index
dc.titleFUNCTIONS AND VECTOR FIELDS ON C(CPn)-SINGULAR MANIFOLDS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución