dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Oregon
dc.date.accessioned2018-11-26T16:19:04Z
dc.date.available2018-11-26T16:19:04Z
dc.date.created2018-11-26T16:19:04Z
dc.date.issued2016-03-15
dc.identifierJournal Of Mathematical Analysis And Applications. San Diego: Academic Press Inc Elsevier Science, v. 435, n. 2, p. 1552-1572, 2016.
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11449/161083
dc.identifier10.1016/j.jmaa.2015.11.039
dc.identifierWOS:000367119200033
dc.identifierWOS000367119200033.pdf
dc.description.abstractThe symmetrized Slater determinants of orthogonal polynomials with respect to a non-negative Borel measure are shown to be represented by constant multiple of Hankel determinants of two other families of polynomials, and they can also be written in terms of Selberg type integrals. Applications include positive determinants of polynomials of several variables and Jensen polynomials and its derivatives for entire functions. (C) 2015 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal Of Mathematical Analysis And Applications
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSlater determinant
dc.subjectOrthogonal polynomials
dc.subjectWronskian
dc.subjectLaplace transform
dc.titleSlater determinants of orthogonal polynomials
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución