dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-11-26T16:18:54Z
dc.date.available2018-11-26T16:18:54Z
dc.date.created2018-11-26T16:18:54Z
dc.date.issued2016-02-01
dc.identifierProceedings Of The American Mathematical Society. Providence: Amer Mathematical Soc, v. 144, n. 2, p. 535-545, 2016.
dc.identifier0002-9939
dc.identifierhttp://hdl.handle.net/11449/161039
dc.identifier10.1090/proc/12689
dc.identifierWOS:000366328000007
dc.description.abstractWe obtain the explicit form of the expansion of the Jacobi polynomial P-n((alpha, beta)) (1 - 2x/beta) in terms of the negative powers of beta. It is known that the constant term in the expansion coincides with the Laguerre polynomial L-n((alpha))(x). Therefore, the result in the present paper provides the higher terms of the asymptotic expansion as beta -> infinity. The corresponding asymptotic relation between the zeros of Jacobi and Laguerre polynomials is also derived.
dc.languageeng
dc.publisherAmer Mathematical Soc
dc.relationProceedings Of The American Mathematical Society
dc.relation1,183
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectJacobi polynomials
dc.subjectLaguerre polynomials
dc.subjectzeros
dc.subjectasymptotics
dc.titleASYMPTOTIC BEHAVIOUR OF JACOBI POLYNOMIALS AND THEIR ZEROS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución