dc.contributorUniversidade Federal da Bahia (UFBA)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T16:01:25Z
dc.date.available2018-11-26T16:01:25Z
dc.date.created2018-11-26T16:01:25Z
dc.date.issued2018-06-01
dc.identifierEngineering Applications Of Artificial Intelligence. Oxford: Pergamon-elsevier Science Ltd, v. 72, p. 368-381, 2018.
dc.identifier0952-1976
dc.identifierhttp://hdl.handle.net/11449/160335
dc.identifier10.1016/j.engappai.2018.04.013
dc.identifierWOS:000434239000031
dc.identifierWOS000434239000031.pdf
dc.description.abstractThe growing use of control access systems based on face recognition shed light over the need for even more accurate systems to detect face spoofing attacks. In this paper, an extensive analysis on face spoofing detection works published in the last decade is presented. The analyzed works are categorized by their fundamental parts, i.e., descriptors and classifiers. This structured survey also brings a comparative performance analysis of the works considering the most important public data sets in the field. The methodology followed in this work is particularly relevant to observe temporal evolution of the field, trends in the existing approaches, to discuss still opened issues, and to propose new perspectives for the future of face spoofing detection.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationEngineering Applications Of Artificial Intelligence
dc.relation0,874
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectFace spoofing
dc.subjectFace recognition
dc.subjectSurvey
dc.subjectSpoofing attack
dc.titleHow far did we get in face spoofing detection?
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución