dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorFed Univ Technol
dc.contributorCNPEM
dc.date.accessioned2018-11-26T15:43:43Z
dc.date.available2018-11-26T15:43:43Z
dc.date.created2018-11-26T15:43:43Z
dc.date.issued2017-04-01
dc.identifierInverse Problems. Bristol: Iop Publishing Ltd, v. 33, n. 4, 26 p., 2017.
dc.identifier0266-5611
dc.identifierhttp://hdl.handle.net/11449/159422
dc.identifier10.1088/1361-6420/33/4/044010
dc.identifierWOS:000395928000010
dc.identifierWOS000395928000010.pdf
dc.description.abstractWe propose the superiorization of incremental algorithms for tomographic image reconstruction. The resulting methods follow a better path in its way to finding the optimal solution for the maximum likelihood problem in the sense that they are closer to the Pareto optimal curve than the non-superiorized techniques. A new scaled gradient iteration is proposed and three super-iorization schemes are evaluated. Theoretical analysis of the methods as well as computational experiments with both synthetic and real data are provided.
dc.languageeng
dc.publisherIop Publishing Ltd
dc.relationInverse Problems
dc.relation1,209
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectsuperiorization
dc.subjectconvex optimization
dc.subjecttomographic image reconstruction
dc.titleSuperiorization of incremental optimization algorithms for statistical tomographic image reconstruction
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución