Tesis
Detecção de oclusão via análise de gradientes de superfície sobre um poliedro para geração de ortoimagem verdadeira
Fecha
2016-04-29Autor
Dal Poz, Aluir Porfírio [UNESP]
Galo, Mauricio [UNESP]
Universidade Estadual Paulista (Unesp)
Institución
Resumen
A utilização de ortoimagem verdadeira, em projetos executados em áreas urbanas, é essencial para certas aplicações. Para a geração de tal produto é necessária a detecção de áreas de oclusão, assim como a compensação destas áreas, usando-se imagens adjacentes. Este trabalho apresenta um novo método de detecção de oclusão denominado SGBM (Surface- Gradient-Based Method), por meio da identificação de gradientes de superfície sobre representação poliédrica. A diferença desse método para os demais encontrados na literatura, como estado da arte, é a utilização de um conjunto de pontos, organizados de acordo com a estrutura de dados TIN (Triangulated Irregular Network). Essa representação, por ser formada por pontos tridimensionais irregularmente espaçados, permite o uso de uma nuvem de pontos com diferentes densidades e, em determinadas situações, a obtenção de bons resultados por meio do uso de um modelo digital de superfície composto por uma quantidade menor de pontos, o que implica menor tempo de processamento. Nesta tese, apresentam-se diferentes experimentos para validar a metodologia proposta, por meio de análise quantitativa (índice de completude, alinhamento de feições lineares e tempo de processamento) e qualitativa (coerência visual dos resultados obtidos). Foram utilizados três conjuntos de dados aéreos obtidos por plataformas à baixa altura de voo. Esses dados são oriundos de sistemas acoplados a veículos aéreos não tripulados e helicóptero. Os conjuntos de pontos tridimensionais foram obtidos por sistemas de varredura a LASER (Light Amplification by Stimulated Emission of Radiation) aerotransportado e por técnicas fotogramétricas. Selecionou-se esse conjunto de dados, devido à grande presença de áreas de oclusão, ao aumento da utilização destas plataformas em levantamentos fotogramétricos e à atual qualidade da extração de nuvem de pontos via correspondência densa de imagens. Os resultados, assim como comparações com métodos existentes, indicam que o método proposto apresenta contribuição ao estado da arte na detecção de oclusão visando à geração de ortoimagem verdadeira, visto que a utilização de uma malha triangular, para análise da superfície, evita certas limitações encontradas nos métodos atuais, assim como, permite uma representação mais eficiente dos elementos presentes na área de interesse. The usage of true-orthophoto in projects performed over urban areas is essential for certain applications. To generate this type of product it is necessary a procedure for occlusion detection, as well as, a proper radiometric compensation for the occluded areas, using adjacent images from the aerial image block. The main objective of this thesis is to present a new method for occlusion detection named SGBM (Surface-Gradient-Based Method), using a surface gradient identification over a polyhedral surface. The main difference among this method and the others, presented as state of the art, is the usage of a point cloud arranged as a triangular data structure (TIN: Triangulated Irregular Network). This surface representation is formed by an irregularly-spaced 3D point cloud, which allows the use of different point density along the surface. This characteristic supports obtaining good results by using a less dense point cloud - situation that requires a reduced computational effort. Several experiments were carried out, seeking for the validation of the proposed method, by using quantitative analyzes (completeness index, mosaic alignment and time of processing) and qualitative analyzes (visual coherence of the obtained results). Three datasets were used, being all acquired by a low-altitude flight configuration (helicopter and unmanned aerial vehicles), which make possible the identification of large occlusion areas. The point cloud was obtained by airborne LASER (Light Amplification by Stimulated Emission of Radiation) scanning system and by dense image matching. These dataset were used due to the incidence of occlusions and the growth of unmanned platform usage. The results indicate that the proposed method has some contribution to the state of the art in occlusion detection, aiming the generation of true-orthophoto. The use of an irregularly-spaced point cloud avoids some limitations found on the other methodologies, along with, a better representation of objects in the surface of interest.