Tesis
Detecção automática e análise temporal de slope streaks na superfície de Marte
Fecha
2016-03-31Registro en:
000865713
33004129043P0
9103545004507135
0000-0002-7069-0479
0000-0002-7069-0479
Autor
Silva, Erivaldo Antonio da [UNESP]
Pina, Pedro
Universidade Estadual Paulista (Unesp)
Institución
Resumen
Slope streaks são rastros escuros que se estendem por declives íngremes na superfície de Marte. Estes rastros representam um dos poucos processos geológicos ativos na superfície deste planeta. Atualmente, muitos pesquisadores os têm estudado com a finalidade de descobrir sua natureza, a qual permanece controversa. Além disso, os slope streaks clareiam com o tempo, fornecendo pistas sobre a deposição de poeira e também sobre a natureza do material da superfície. Embora exista um número considerável de pesquisadores que estudam esses rastros, a identificação destes ainda é realizada por especialistas manualmente, através de amostras de pequena dimensão. A existência de um número elevado destas estruturas na superfície de Marte, a necessidade de caracterizá-las e também de quantificar a sua evolução temporal, não pode continuar a ser efetuada simplesmente por amostragem e de uma forma manual. É neste contexto que esta pesquisa se enquadra. A proposta consiste em contribuir para a automação do processo de extração de informações em imagens da superfície de Marte, especificamente, extração de informações sobre slope streaks. Através do desenvolvimento de um método de detecção automática de slope streaks em imagens orbitais e, também, de um método automático para análise temporal da taxa de esmaecimento, este objetivo foi alcançado neste trabalho. O método de detecção desenvolvido baseia-se principalmente em Morfologia Matemática e faz uso de operadores morfológicos conectados para o pré-processamento das imagens, transformada top-hat, binarização pelo método de Otsu, afinamento e reconstrução geodésica, seguido por um filtro de fator de forma. O método para a análise temporal desenvolvido consiste em um algoritmo que calcula a taxa de contraste entre o interior e a área de vizinhança de um mesmo rastro, em imagens multi-temporais registradas. Os resultados obtidos com ambos os métodos foram bastante satisfatórios e possibilitaram extrair informações inovadoras a respeito do comportamento destes rastros na superfície de Marte. As duas ferramentas desenvolvidas mostraram-se robustas para serem aplicadas a grande escala e a um grande conjunto de imagens. Slope streaks are typically dark, narrow and fan-shaped features that extend down slope on Mars surface. They are one of the most active and dynamic process observed on the planet’s surface. Dry and wet processes have been suggested for causing their formation but their origin is still unclear. Moreover, the streaks tend to fade with time, providing clues about dust settling and material properties. Studies that quantify some characteristics of these streaks are based on manual interactive procedures to delineate only a small portion of the available slope streaks and to measure their morphometric characteristics. The availability of a methodology to segment the streaks and to extract meaningful information would naturally increase the regional knowledge and the statistical significance, as a much larger amount of images from different locations could be analyzed, together with a more complete monitoring of the fading/appearance of the dark streaks. Thus, the purpose of this research is to contribute to the information extraction process from surface images of Mars. Hence, a method to automatically detect slope streaks and an algorithm to quantify the temporal fading of each streak over the years were developed. The detection method was based on morphological operators and it was used in a part of the methodology to quantify the fading of the streaks. The results of the detection method and the temporal fading algorithm were very satisfactory. Both methods are able to extract information about the behaviour of the slope streaks on the Martian surface. Finally, the two tools are robust enough to be applied on a large scale and a large set of images.