dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Tecnológica Federal do Paraná (UTFPR)
dc.date.accessioned2016-03-02T13:03:19Z
dc.date.available2016-03-02T13:03:19Z
dc.date.created2016-03-02T13:03:19Z
dc.date.issued2014
dc.identifierJournal of Control, Automation and Electrical Systems, v. 25, n. 6, p. 732-740, 2014.
dc.identifier2195-3899
dc.identifierhttp://hdl.handle.net/11449/135565
dc.identifier9728054402919622
dc.identifier9290715282345636
dc.identifier1204232509410955
dc.identifier7416585768192991
dc.description.abstractDuring the last 30 years the Atomic Force Microscopy became the most powerful tool for surface probing in atomic scale. The Tapping-Mode Atomic Force Microscope is used to generate high quality accurate images of the samples surface. However, in this mode of operation the microcantilever frequently presents chaotic motion due to the nonlinear characteristics of the tip-sample forces interactions, degrading the image quality. This kind of irregular motion must be avoided by the control system. In this work, the tip-sample interaction is modelled considering the Lennard-Jones potentials and the two-term Galerkin aproximation. Additionally, the State Dependent Ricatti Equation and Time-Delayed Feedback Control techniques are used in order to force the Tapping-Mode Atomic Force Microscope system motion to a periodic orbit, preventing the microcantilever chaotic motion
dc.languageeng
dc.relationJournal of Control, Automation and Electrical Systems
dc.relation0,274
dc.rightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectNonlinear control systems
dc.subjectChaos
dc.subjectAtomic force microscopy
dc.subjectState dependent Ricatti equation
dc.subjectTime-delayed feedback
dc.titlePreventing chaotic motion in tapping-mode atomic force microscope
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución