dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:27:14Z
dc.date.available2014-05-20T13:27:14Z
dc.date.created2014-05-20T13:27:14Z
dc.date.issued2005-11-01
dc.identifierInternational Journal of General Systems. Abingdon: Taylor & Francis Ltd, v. 34, n. 6, p. 717-734, 2005.
dc.identifier0308-1079
dc.identifierhttp://hdl.handle.net/11449/130757
dc.identifier10.1080/03081070500422695
dc.identifierWOS:000234290400004
dc.identifier4517057121462258
dc.identifier8212775960494686
dc.description.abstractNeural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural networks for solving the N-Queens problem. More specifically, a modified Hopfield network is developed and its internal parameters are explicitly computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the considered problem. The network is shown to be completely stable and globally convergent to the solutions of the N-Queens problem. A fuzzy logic controller is also incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationInternational Journal of General Systems
dc.relation2.931
dc.relation1,665
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectNeural network architecture
dc.subjectCombinatorial optimization
dc.subjectHopfield network
dc.subjectFuzzy inference systems
dc.subjectRecurrent neural network
dc.titleDevelopment of neurofuzzy architecture for solving the N-Queens problem
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución