dc.contributorShanghai Jiao Tong Univ
dc.contributorUCL
dc.contributorZhejiang Univ Technol
dc.contributorNatl Univ Singapore
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorCapital Normal Univ
dc.contributorMax Planck Inst Math Sci
dc.date.accessioned2015-10-22T07:20:48Z
dc.date.available2015-10-22T07:20:48Z
dc.date.created2015-10-22T07:20:48Z
dc.date.issued2015-06-03
dc.identifierScientific Reports. London: Nature Publishing Group, v. 5, p. 1-7, 2015.
dc.identifier2045-2322
dc.identifierhttp://hdl.handle.net/11449/129849
dc.identifier10.1038/srep10262
dc.identifierWOS:000355647900001
dc.identifierWOS000355647900001.pdf
dc.identifier8884890472193474
dc.identifier0000-0003-3297-905X
dc.description.abstractWe present an analytical solution for classical correlation, defined in terms of linear entropy, in an arbitrary d circle times 2 system when the second subsystem is measured. We show that the optimal measurements used in the maximization of the classical correlation in terms of linear entropy, when used to calculate the quantum discord in terms of von Neumann entropy, result in a tight upper bound for arbitrary d circle times 2 systems. This bound agrees with all known analytical results about quantum discord in terms of von Neumann entropy and, when comparing it with the numerical results for 10(6) two-qubit random density matrices, we obtain an average deviation of order 10(-4). Furthermore, our results give a way to calculate the quantum discord for arbitrary n-qubit GHZ and W states evolving under the action of the amplitude damping noisy channel.
dc.languageeng
dc.publisherNature Publishing Group
dc.relationScientific Reports
dc.relation4.122
dc.relation1,533
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.titleQuantum Discord for d circle times 2 Systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución