dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-10-22T07:08:45Z
dc.date.available2015-10-22T07:08:45Z
dc.date.created2015-10-22T07:08:45Z
dc.date.issued2015-06-01
dc.identifierQuality And Reliability Engineering International. Hoboken: Wiley-blackwell, v. 31, n. 4, p. 683-693, 2015.
dc.identifier0748-8017
dc.identifierhttp://hdl.handle.net/11449/129790
dc.identifier10.1002/qre.1628
dc.identifierWOS:000354883900013
dc.description.abstractThis article proposes two Shewhart charts, denoted np(xy) and np(w) charts, which use attribute inspection to control the mean vector ((x); (y)) of bivariate processes. The units of the sample are classified as first-class, second-class, or third-class units, according to discriminate limits and the values of their two quality characteristics, X and Y. When the np(xy) chart is in use, the monitoring statistic is M=N-1+N-2, where N-1 and N-2 are the number of sample units with a second-class and third-class classification, respectively. When the np(w) chart is in use, the monitoring statistic is W=N-1+2N(2). We assume that the quality characteristics X and Y follow a bivariate normal distribution and that the assignable cause shifts the mean vector without changing the covariance matrix. In general, the synthetic np(xy) and np(w) charts require twice larger samples to outperform the T-2 chart. Copyright (c) 2014 John Wiley &Sons, Ltd.
dc.languageeng
dc.publisherWiley-Blackwell
dc.relationQuality And Reliability Engineering International
dc.relation1.604
dc.relation0,955
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectDiscriminating limits
dc.subjectNp(xy) chart
dc.subjectNp(w) chart
dc.subjectBivariate normal processes
dc.subjectAttribute and variable control charts
dc.subjectSynthetic chart
dc.subjectT-2 chart
dc.titleAttribute charts for monitoring the mean vector of bivariate processes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución