dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-10-22T06:48:40Z
dc.date.available2015-10-22T06:48:40Z
dc.date.created2015-10-22T06:48:40Z
dc.date.issued2015-05-01
dc.identifierIeee-acm Transactions On Computational Biology And Bioinformatics. Los Alamitos: Ieee Computer Soc, v. 12, n. 3, p. 705-711, 2015.
dc.identifier1545-5963
dc.identifierhttp://hdl.handle.net/11449/129779
dc.identifier10.1109/TCBB.2014.2377750
dc.identifierWOS:000356608100022
dc.identifier0500034174785796
dc.description.abstractWe introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.
dc.languageeng
dc.publisherIeee Computer Soc
dc.relationIeee-acm Transactions On Computational Biology And Bioinformatics
dc.relation2.428
dc.relation0,649
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSuvrel
dc.subjectRelevance Learning
dc.subjectAnalytic metric learning
dc.subjectProteomics
dc.subjectMetabolomics
dc.subjectGenomics
dc.subjectFeature selection
dc.subjectDistance learning
dc.titleSupervised variational relevance learning, an analytic geometric feature selection with applications to omic datasets
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución