Brasil
| Artículos de revistas
Recovery Tests of an Hybrid Current Limiter Composed of a SFCL in Parallel to an Air-Core Power Reactor
Fecha
2015-02-01Registro en:
Journal Of Superconductivity And Novel Magnetism, v. 28, n. 2, p. 691-695, 2015.
1557-1939
10.1007/s10948-014-2811-x
WOS:000349350100075
1689995854269032
Autor
Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
Institución
Resumen
The resistive-type superconducting fault current limiters (RSFCL) prototypes using YBCO-coated conductors have shown current limitation for medium voltage class applications for acting time up to 80 ms. By connecting an air-core reactor in parallel with the RSFCL, thus making an hybrid current limiter, one can extend the acting time for up to 1 s. In this work, we report the performance of a hybrid current limiter subjected to an AC peak fault current of 2 kA during 1 s for which within the first 80 ms the SFCL limits the current concurrently with the air-core reactor, and for the remaining 920 ms, only the air-core reactor limits the current. In order to evaluate the actual conditions for subsequent reconnection of RSFCL to the power grid, the hybrid fault current limiter was tested varying the time interval for recovery from 900 ms and 1.2 s, followed again by the concurrent operation of the hybrid limiter during 1 s (SFCL during 80 ms). From this evaluation test, the recovery time can be measured and compared using the voltage peak generated in superconducting module from the first and second fault test. The recovery time was also determined through the pulsed current method (PCM) on short-length sample test. The results showed that the fault current was limited from 1.9 kA down to 514 A after 1 cycle of 60 Hz frequency, with recovery time lower than 1.2 s for two subsequent fault current tests.