dc.contributorUniv Autonoma Barcelona
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-10-21T20:52:39Z
dc.date.available2015-10-21T20:52:39Z
dc.date.created2015-10-21T20:52:39Z
dc.date.issued2015-01-01
dc.identifierInternational Journal Of Bifurcation And Chaos, v. 25, n. 1, p. 16, 2015.
dc.identifier0218-1274
dc.identifierhttp://hdl.handle.net/11449/129339
dc.identifier10.1142/S0218127415500157
dc.identifierWOS:000349227400017
dc.identifier3757225669056317
dc.description.abstractWe give the normal forms of all polynomial differential systems in R-3 which have a nondegenerate or degenerate quadric as an invariant algebraic surface. We also characterize among these systems those which have a Darboux invariant constructed uniquely using the invariant quadric, giving explicitly their expressions. As an example, we apply the obtained results in the determination of the Darboux invariants for the Chen system with an invariant quadric.
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationInternational Journal Of Bifurcation And Chaos
dc.relation1.501
dc.relation0,568
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectPolynomial differential systems
dc.subjectinvariant quadric
dc.subjectDarboux integrability
dc.subjectDarboux invariant
dc.titleNormal Forms for Polynomial Differential Systems in R-3 Having an Invariant Quadric and a Darboux Invariant
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución