dc.contributor | Univ Autonoma Barcelona | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2015-10-21T20:52:39Z | |
dc.date.available | 2015-10-21T20:52:39Z | |
dc.date.created | 2015-10-21T20:52:39Z | |
dc.date.issued | 2015-01-01 | |
dc.identifier | International Journal Of Bifurcation And Chaos, v. 25, n. 1, p. 16, 2015. | |
dc.identifier | 0218-1274 | |
dc.identifier | http://hdl.handle.net/11449/129339 | |
dc.identifier | 10.1142/S0218127415500157 | |
dc.identifier | WOS:000349227400017 | |
dc.identifier | 3757225669056317 | |
dc.description.abstract | We give the normal forms of all polynomial differential systems in R-3 which have a nondegenerate or degenerate quadric as an invariant algebraic surface. We also characterize among these systems those which have a Darboux invariant constructed uniquely using the invariant quadric, giving explicitly their expressions. As an example, we apply the obtained results in the determination of the Darboux invariants for the Chen system with an invariant quadric. | |
dc.language | eng | |
dc.publisher | World Scientific Publ Co Pte Ltd | |
dc.relation | International Journal Of Bifurcation And Chaos | |
dc.relation | 1.501 | |
dc.relation | 0,568 | |
dc.rights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Polynomial differential systems | |
dc.subject | invariant quadric | |
dc.subject | Darboux integrability | |
dc.subject | Darboux invariant | |
dc.title | Normal Forms for Polynomial Differential Systems in R-3 Having an Invariant Quadric and a Darboux Invariant | |
dc.type | Artículos de revistas | |