dc.contributorCEA Saclay
dc.contributorUniv Autonoma Barcelona
dc.contributorFermilab Natl Accelerator Lab
dc.contributorCarleton Univ
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-10-21T17:03:34Z
dc.date.available2015-10-21T17:03:34Z
dc.date.created2015-10-21T17:03:34Z
dc.date.issued2015-04-20
dc.identifierJournal Of High Energy Physics. New York: Springer, n. 4, p. 1-22, 2015.
dc.identifier1029-8479
dc.identifierhttp://hdl.handle.net/11449/128946
dc.identifier10.1007/JHEP04(2015)089
dc.identifierWOS:000353551800006
dc.identifierWOS000353551800006.pdf
dc.description.abstractWe study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. We estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.
dc.languageeng
dc.publisherSpringer
dc.relationJournal Of High Energy Physics
dc.relation5.541
dc.relation1,227
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectHiggs Physics
dc.subjectBeyond Standard Model
dc.subjectSupersymmetric Standard Model
dc.titleDirac gaugions, R symmetry and the 125 GeV Higgs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución