dc.contributorUniv Vigo
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de São Paulo (UNIFESP)
dc.date.accessioned2015-10-21T13:14:44Z
dc.date.available2015-10-21T13:14:44Z
dc.date.created2015-10-21T13:14:44Z
dc.date.issued2015-07-01
dc.identifierNumerical Algorithms, v. 69, n. 3, p. 611-624, 2015.
dc.identifier1017-1398
dc.identifierhttp://hdl.handle.net/11449/128868
dc.identifier10.1007/s11075-014-9916-y
dc.identifierWOS:000356823700010
dc.description.abstractSharp bounds for the zeros of symmetric Kravchuk polynomials K (n) (x;M) are obtained. The results provide a precise quantitative meaning of the fact that Kravchuk polynomials converge uniformly to Hermite polynomials, as M tends to infinity. They show also how close the corresponding zeros of two polynomials from these sequences of classical orthogonal polynomials are.
dc.languageeng
dc.publisherSpringer
dc.relationNumerical Algorithms
dc.relation1.536
dc.relation0,981
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectOrthogonal polynomials of a discrete variable
dc.subjectSymmetric Kravchuk polynomials
dc.subjectHermite polynomials
dc.subjectLimit relation
dc.subjectZeros
dc.titleBounds for the zeros of symmetric kravchuk polynomials
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución