dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-07-15T18:27:27Z
dc.date.available2015-07-15T18:27:27Z
dc.date.created2015-07-15T18:27:27Z
dc.date.issued2013
dc.identifierJournal of Dynamical and Control Systems, v. 19, n. 2, p. 157-171, 2013.
dc.identifier1079-2724
dc.identifierhttp://hdl.handle.net/11449/124683
dc.identifier10.1007/s10883-013-9168-5
dc.identifier3231282086023916
dc.description.abstractLet S be a subsemigroup with nonempty interior of a connected complex simple Lie group G. It is proved that S = G if S contains a subgroup G (α) ≈ Sl (2, C) generated by the exp g±α, where gα is the root space of the root α. The proof uses the fact, proved before, that the invariant control set of S is contractible in some flag manifold if S is proper, and exploits the fact that several orbits of G (α) are 2-spheres not null homotopic. The result is applied to revisit a controllability theorem and get some improvements.
dc.languageeng
dc.relationJournal of Dynamical and Control Systems
dc.relation0.693
dc.relation0,316
dc.rightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectControllability
dc.subjectSimple Lie groups
dc.subjectFlag manifolds
dc.titleControllability of control systems on complex simple lie groups and the topology of flag manifolds
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución