dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-04-27T11:56:00Z
dc.date.available2015-04-27T11:56:00Z
dc.date.created2015-04-27T11:56:00Z
dc.date.issued2014
dc.identifierHiroshima Mathematical Journal, v. 44, p. 127-137, 2014.
dc.identifier0018-2079
dc.identifierhttp://hdl.handle.net/11449/122742
dc.identifier9827386217465989
dc.description.abstractIn this paper we investigate the C ` versions of contact and right equivalences of real semi-quasihomogeneous C ` function germs, 1 ≤ ` ≤ ∞. The C ` -right equivalence implies C ` -contact equivalence for any 1 ≤ ` ≤ ∞ and in this work we show, up to certain conditions, that for semi-quasihomogeneous C ` function germs the converse is also true. As a consequence, we recover some known results about C∞-right and C∞-contact equivalences of C∞ function germs. We note that we are considering semi-quasihomogeneous function germs with no additional hypothesis of isolated singularity at zero.
dc.languagepor
dc.relationHiroshima Mathematical Journal
dc.relation0.257
dc.relation0,351
dc.rightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectcontact equivalence
dc.subjectright equivalence
dc.subjectsemi-quasihomogeneous germs
dc.titleC^l-contact and C^l-right equivalences of real semi-quasihomogeneous C^l-function germs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución