dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-04-27T11:55:58Z
dc.date.available2015-04-27T11:55:58Z
dc.date.created2015-04-27T11:55:58Z
dc.date.issued2014
dc.identifierInternational Journal of Applied Mathematics, v. 27, n. 1, p. 13-20, 2014.
dc.identifier1311-1728
dc.identifierhttp://hdl.handle.net/11449/122696
dc.identifier10.12732/ijam.v27i1.2
dc.identifier3186337502957366
dc.description.abstractBased on the cohomology theory of groups, Andrade and Fanti defined in [1] an algebraic invariant, denoted by E(G,S, M), where G is a group, S is a family of subgroups of G with infinite index and M is a Z2G-module. In this work, by using the homology theory of groups instead of cohomology theory, we define an invariant ``dual'' to E(G, S, M), which we denote by E*(G, S, M). The purpose of this paper is, through the invariant E*(G, S, M), to obtain some results and applications in the theory of duality groups and group pairs, similar to those shown in Andrade and Fanti [2], and thus, providing an alternative way to get applications and properties of this theory.
dc.languageeng
dc.relationInternational Journal of Applied Mathematics
dc.rightsAcesso aberto
dc.sourceCurrículo Lattes
dc.subjecthomology of groups
dc.subjectduality
dc.subjectcohomological invariants
dc.titleA dual homological invariant and some properties
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución