dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-04-27T11:55:57Z
dc.date.available2015-04-27T11:55:57Z
dc.date.created2015-04-27T11:55:57Z
dc.date.issued2012
dc.identifierJournal of Advanced Research in Applied Mathematics, v. 4, n. 4, p. 66-77, 2012.
dc.identifier1942-9649
dc.identifierhttp://hdl.handle.net/11449/122688
dc.identifier10.5373/jaram.1362.031912
dc.identifier8940498347481982
dc.description.abstractFor a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.
dc.languageeng
dc.relationJournal of Advanced Research in Applied Mathematics
dc.rightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectCyclic code
dc.subjectBCH code
dc.subjectAlternant code
dc.subjectGoppa code
dc.subjectSrivastava code
dc.titleLinear codes over finite local rings in a chain
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución