dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-03-18T15:56:41Z
dc.date.available2015-03-18T15:56:41Z
dc.date.created2015-03-18T15:56:41Z
dc.date.issued2014-11-01
dc.identifierNumerical Algorithms. Dordrecht: Springer, v. 67, n. 3, p. 549-563, 2014.
dc.identifier1017-1398
dc.identifierhttp://hdl.handle.net/11449/117661
dc.identifier10.1007/s11075-013-9807-7
dc.identifierWOS:000344598600005
dc.description.abstractLet x(n,k)((alpha,beta)), k = 1, ... , n, be the zeros of Jacobi polynomials P-n((alpha,beta)) (x) arranged in decreasing order on (-1, 1), where alpha, beta > -1, and theta((alpha,beta))(n,k) = arccos x(n,k)((alpha,beta)). Gautschi, in a series of recent papers, conjectured that the inequalitiesn theta((alpha,beta))(n,k) < (n + 1)theta((alpha,beta))(n+1,k)and(n + (alpha + beta + 3)/2)theta((alpha,beta))(n+1,k) < (n + (alpha + beta + 1)/2)theta((alpha,beta))(n,k),hold for all n >= 1, k = 1, ... , n, and certain values of the parameters alpha and beta. We establish these conjectures for large domains of the (alpha, beta)-plane by using a Sturmian approach.
dc.languageeng
dc.publisherSpringer
dc.relationNumerical Algorithms
dc.relation1.536
dc.relation0,981
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectGautschi's conjectures
dc.subjectJacobi polynomials
dc.subjectZeros
dc.subjectInequalities
dc.titleInequalities for zeros of Jacobi polynomials via Sturm's theorem: Gautschi's conjectures
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución