dc.contributorSan Diego State Univ
dc.contributorUniv Fed Alagoas
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-03-18T15:55:34Z
dc.date.available2015-03-18T15:55:34Z
dc.date.created2015-03-18T15:55:34Z
dc.date.issued2008-02-01
dc.identifierInternational Journal Of Number Theory. Singapore: World Scientific Publ Co Pte Ltd, v. 4, n. 1, p. 147-154, 2008.
dc.identifier1793-0421
dc.identifierhttp://hdl.handle.net/11449/117219
dc.identifier10.1142/S1793042108001262
dc.identifierWOS:000253123900011
dc.description.abstractA new constructive family of asymptotically good lattices with respect to sphere packing density is presented. The family has a lattice in every dimension n >= 1. Each lattice is obtained from a conveniently chosen integral ideal in a subfield of the cyclotomic field Q(zeta(q)) where q is the smallest prime congruent to 1 modulo n.
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationInternational Journal Of Number Theory
dc.relation0.536
dc.relation0,865
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectlattices
dc.subjectsphere packings
dc.subjectcenter density
dc.subjectnumber fields
dc.subjectgeometry of numbers
dc.subjectcyclotomic fields
dc.subjectCraig's lattices
dc.titleA family of asymptotically good lattices having a lattice in each dimension
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución