dc.contributor | San Diego State Univ | |
dc.contributor | Univ Fed Alagoas | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2015-03-18T15:55:34Z | |
dc.date.available | 2015-03-18T15:55:34Z | |
dc.date.created | 2015-03-18T15:55:34Z | |
dc.date.issued | 2008-02-01 | |
dc.identifier | International Journal Of Number Theory. Singapore: World Scientific Publ Co Pte Ltd, v. 4, n. 1, p. 147-154, 2008. | |
dc.identifier | 1793-0421 | |
dc.identifier | http://hdl.handle.net/11449/117219 | |
dc.identifier | 10.1142/S1793042108001262 | |
dc.identifier | WOS:000253123900011 | |
dc.description.abstract | A new constructive family of asymptotically good lattices with respect to sphere packing density is presented. The family has a lattice in every dimension n >= 1. Each lattice is obtained from a conveniently chosen integral ideal in a subfield of the cyclotomic field Q(zeta(q)) where q is the smallest prime congruent to 1 modulo n. | |
dc.language | eng | |
dc.publisher | World Scientific Publ Co Pte Ltd | |
dc.relation | International Journal Of Number Theory | |
dc.relation | 0.536 | |
dc.relation | 0,865 | |
dc.rights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | lattices | |
dc.subject | sphere packings | |
dc.subject | center density | |
dc.subject | number fields | |
dc.subject | geometry of numbers | |
dc.subject | cyclotomic fields | |
dc.subject | Craig's lattices | |
dc.title | A family of asymptotically good lattices having a lattice in each dimension | |
dc.type | Artículos de revistas | |