dc.contributorUniversidade de São Paulo (USP)
dc.contributorHumboldt Univ
dc.contributorPotsdam Inst Climate Impact Res
dc.contributorHosp Israelita Albert Einstein
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-03-18T15:55:32Z
dc.date.available2015-03-18T15:55:32Z
dc.date.created2015-03-18T15:55:32Z
dc.date.issued2014-12-01
dc.identifierEuropean Physical Journal-special Topics. Heidelberg: Springer Heidelberg, v. 223, n. 13, p. 2913-2922, 2014.
dc.identifier1951-6355
dc.identifierhttp://hdl.handle.net/11449/117203
dc.identifier10.1140/epjst/e2014-02304-x
dc.identifierWOS:000346248900022
dc.description.abstractIn experimental studies, electrical stimulation (ES) has been applied to induce neuronal activity or to disrupt pathological patterns. Nevertheless, the underlying mechanisms of these activity pattern transitions are not clear. To study these phenomena, we simulated a model of the hippocampal region CA1. The computational simulations using different amplitude levels and duration of ES revealed three states of neuronal excitability: burst-firing mode, depolarization block and spreading depression wave. We used the bifurcation theory to analyse the interference of ES in the cellular excitability and the neuronal dynamics. Understanding this process would help to improve the ES techniques to control some neurological disorders.
dc.languageeng
dc.publisherSpringer
dc.relationEuropean Physical Journal-special Topics
dc.relation1.947
dc.relation0,552
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleNeuronal excitability level transition induced by electrical stimulation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución