dc.contributorUniv Vigo
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de São Paulo (UNIFESP)
dc.date.accessioned2015-03-18T15:55:23Z
dc.date.available2015-03-18T15:55:23Z
dc.date.created2015-03-18T15:55:23Z
dc.date.issued2014-01-01
dc.identifierSiam Journal On Numerical Analysis. Philadelphia: Siam Publications, v. 52, n. 4, p. 1867-1886, 2014.
dc.identifier0036-1429
dc.identifierhttp://hdl.handle.net/11449/117189
dc.identifier10.1137/120887278
dc.identifierWOS:000341571300005
dc.description.abstractLet N be a positive integer and x(j) be N equidistant points. We propose an algorithmic approach for approximate calculation of sums of the form Sigma(N)(j=1) F(x(j)). The method is based on the Gaussian type quadrature formula for sums, Sigma F-N(j =1)(x(j)) approximate to Sigma B-n(k=1)n,k F(g(n,k)(N)), n << N,where g(n,k)(N) are the zeros of the so-called Gram polynomials. This allows the calculation of sums with very large number of terms N to be reduced to sums with a much smaller number of summands n. The first task in constructing such a formula is to calculate its nodes g(n,k)(N). In this paper we obtain precise lower and upper bounds for g(n,k)(N). Numerical experiments show that the estimates for the zeros g(n,k)(N) are very sharp and that the proposed method for calculation of sums is efficient.
dc.languageeng
dc.publisherSiam Publications
dc.relationSiam Journal On Numerical Analysis
dc.relation2.047
dc.relation2,657
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectapproximate calculation of sums
dc.subjectGaussian type quadrature formula for sums
dc.subjectorthogonal Gram polynomials
dc.subjectzeros of Gram polynomials
dc.titleAPPROXIMATE CALCULATION OF SUMS I: BOUNDS FOR THE ZEROS OF GRAM POLYNOMIALS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución