dc.contributorPolitecn Torino
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-03-18T15:53:33Z
dc.date.available2015-03-18T15:53:33Z
dc.date.created2015-03-18T15:53:33Z
dc.date.issued2014-10-01
dc.identifierJournal Of Algebra. San Diego: Academic Press Inc Elsevier Science, v. 415, p. 162-183, 2014.
dc.identifier0021-8693
dc.identifierhttp://hdl.handle.net/11449/116581
dc.identifier10.1016/j.jalgebra.2014.05.030
dc.identifierWOS:000339467500009
dc.identifier3355840219680031
dc.identifier0000-0001-5885-5034
dc.description.abstractThere is a bridge between generic linear Ordinary Differential Equations (ODEs), Schubert Calculus and the bosonic-fermionic representations of the Heisenberg algebra. For a finite-order generic linear ODE, the role of the bosonic space is played by the polynomial ring generated by the coefficients of the equation. The fermionic counterpart is constructed via wedging solutions to a generic linear ODE. Such natural spaces provide representations of Lie algebras which may be viewed as finitely generated approximations of the oscillator Heisenberg algebra. (C) 2014 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal Of Algebra
dc.relation0.675
dc.relation1,187
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectGeneric linear ODEs
dc.subjectSchubert calculus
dc.subjectBoson-fermion correspondence
dc.subjectBosonic and fermionic representations of the Heisenberg algebra
dc.titleThe boson-fermion correspondence from linear ODEs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución