dc.contributorRice Univ
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorNortheastern Univ
dc.date.accessioned2015-03-18T15:53:21Z
dc.date.available2015-03-18T15:53:21Z
dc.date.created2015-03-18T15:53:21Z
dc.date.issued2014-12-16
dc.identifierBiophysical Journal. Cambridge: Cell Press, v. 107, n. 12, p. 2872-2881, 2014.
dc.identifier0006-3495
dc.identifierhttp://hdl.handle.net/11449/116461
dc.identifier10.1016/j.bpj.2014.10.022
dc.identifierWOS:000346434200018
dc.identifier1518826294347383
dc.identifier0500034174785796
dc.description.abstractTo reveal the molecular determinants of biological function, one seeks to characterize the interactions that are formed in conformational and chemical transition states. In other words, what interactions govern the molecule's energy landscape? To accomplish this, it is necessary to determine which degrees of freedom can unambiguously identify each transition state. Here, we perform simulations of large-scale aminoacyl-transfer RNA ( aa-tRNA) rearrangements during accommodation on the ribosome and project the dynamics along experimentally accessible atomic distances. From this analysis, we obtain evidence for which coordinates capture the correct number of barrier-crossing events and accurately indicate when the aa-tRNA is on a transition path. Although a commonly used coordinate in single-molecule experiments performs poorly, this study implicates alternative coordinates along which rearrangements are accurately described as diffusive movements across a one-dimensional free-energy profile. From this, we provide the theoretical foundation required for single-molecule techniques to uncover the energy landscape governing aa-tRNA selection by the ribosome.
dc.languageeng
dc.publisherCell Press
dc.relationBiophysical Journal
dc.relation3.495
dc.relation1,949
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleCapturing Transition Paths and Transition States for Conformational Rearrangements in the Ribosome
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución