dc.contributorUniv Autonoma Barcelona
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-03-18T15:53:16Z
dc.date.available2015-03-18T15:53:16Z
dc.date.created2015-03-18T15:53:16Z
dc.date.issued2015-01-01
dc.identifierApplied Mathematics And Computation. New York: Elsevier Science Inc, v. 250, p. 887-907, 2015.
dc.identifier0096-3003
dc.identifierhttp://hdl.handle.net/11449/116403
dc.identifier10.1016/j.amc.2014.11.029
dc.identifierWOS:000346241000077
dc.description.abstractThe main goal of this paper is to study the maximum number of limit cycles that bifurcate from the period annulus of the cubic centers that have a rational first integral of degree 2 when they are perturbed inside the class of all cubic polynomial differential systems using the averaging theory. The computations of this work have been made with Mathematica and Maple. (C) 2014 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationApplied Mathematics And Computation
dc.relation2.300
dc.relation1,065
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectPolynomial vector fields
dc.subjectLimit cycles
dc.subjectIsochronous centers
dc.subjectPeriodic orbits
dc.subjectAveraging method
dc.titleLimit cycles of cubic polynomial differential systems with rational first integrals of degree 2
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución