dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-03-18T15:53:05Z
dc.date.available2015-03-18T15:53:05Z
dc.date.created2015-03-18T15:53:05Z
dc.date.issued2014-12-01
dc.identifierJournal Of Nanoparticle Research. Dordrecht: Springer, v. 16, n. 12, 13 p., 2014.
dc.identifier1388-0764
dc.identifierhttp://hdl.handle.net/11449/116341
dc.identifier10.1007/s11051-014-2809-0
dc.identifierWOS:000346697000066
dc.identifier0304271846229471
dc.identifier6475585105456744
dc.description.abstractThis study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around 47 nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.
dc.languageeng
dc.publisherSpringer
dc.relationJournal Of Nanoparticle Research
dc.relation2.127
dc.relation0,528
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectComputational vision
dc.subjectGold nanoparticles
dc.subjectImage processing
dc.subjectMulti-level starlet segmentation
dc.subjectNatural rubber
dc.subjectScanning electron microscopy
dc.subjectWavelets
dc.subjectModeling and simulation
dc.titleEstimating the concentration of gold nanoparticles incorporated on natural rubber membranes using multi-level starlet optimal segmentation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución