dc.contributorUniversidade Federal do Maranhão (UFMA)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-02-02T12:39:14Z
dc.date.available2015-02-02T12:39:14Z
dc.date.created2015-02-02T12:39:14Z
dc.date.issued2014-09-01
dc.identifierPesquisa Agropecuária Brasileira. Embrapa Informação TecnológicaPesquisa Agropecuária Brasileira, v. 49, n. 9, p. 708-718, 2014.
dc.identifier0100-204X
dc.identifierhttp://hdl.handle.net/11449/114130
dc.identifier10.1590/S0100-204X2014000900007
dc.identifierS0100-204X2014000900708
dc.identifierS0100-204X2014000900708.pdf
dc.identifier7053426037771460
dc.description.abstractThe objective of this work was to evaluate the performance of the sequential Gaussian simulation (SGS) and the sequential indicator simulation (SIS) for modeling the uncertainty of available K predictions in a sugarcane area, and to compare both simulations to the already established method of ordinary kriging (OK). A sampling grid with 626 points was installed in an area of 200 ha, in the municipality of Tabapuã, in the state of São Paulo, Brazil. The simulations reproduced the variability in the available K sample data, whereas OK overestimated the low K levels and underestimated the high ones. The standard deviation map obtained from OK showed less variation along the studied area when compared to the maps obtained from the simulations. SIS achieved an accuracy 22% higher than that obtained by SGS for modeling the conditional distribution function of K. The simulations have higher efficiency than OK for modeling the uncertainty in the spatial distribution of K. SIS has better performance than SGS for estimating the levels of available K in sugarcane area.
dc.description.abstractO objetivo deste trabalho foi avaliar o desempenho da simulação sequencial gaussiana (SSG) e da simulação sequencial indicatriz (SSI) na modelagem da incerteza das predições do K disponível em área de cana-de-açúcar, e comparar as simulações com o método já consagrado de krigagem ordinária (KO). Uma malha amostral com 626 pontos foi instalada em área de 200 ha, no Município de Tabapuã, em São Paulo. As simulações reproduziram a variabilidade dos dados amostrais de K disponível, enquanto a KO superestimou os baixos teores de K e subestimou os altos. O mapa de desvio-padrão obtido a partir da KO mostrou menor variação ao longo da área de estudo, quando comparado aos mapas obtidos a partir das simulações. A SSI obteve acurácia 22% superior à obtida pela SSG, na modelagem da função de distribuição condicional do K. As simulações apresentam maior eficiência que a KO para modelar incerteza na distribuição espacial do K. A SSI apresenta melhor desempenho que a SSG na estimativa dos teores de K disponível, em área de cana-de-açúcar.
dc.languagepor
dc.publisherEmbrapa Informação TecnológicaPesquisa Agropecuária Brasileira
dc.relationPesquisa Agropecuária Brasileira
dc.relation0.546
dc.rightsAcesso aberto
dc.sourceSciELO
dc.subjectFertilidade do solo
dc.subjectGeoestatística
dc.subjectKrigagem
dc.subjectSimulação sequencial gaussiana
dc.subjectSimulação sequencial indicatriz
dc.subjectVariabilidade espacial.
dc.subjectSoil fertility
dc.subjectGeostatistics
dc.subjectKriging
dc.subjectSequential Gaussian simulation
dc.subjectSequential indicator simulation
dc.subjectSpatial variability.
dc.titleModelagem e quantificação da incerteza espacial do potássio disponível no solo por simulações estocásticas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución