dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorInstituto Nacional de Pesquisas Espaciais (INPE)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorMiddlesex Univ
dc.date.accessioned2014-12-03T13:11:45Z
dc.date.available2014-12-03T13:11:45Z
dc.date.created2014-12-03T13:11:45Z
dc.date.issued2014-04-01
dc.identifierIeee Transactions On Geoscience And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 52, n. 4, p. 2126-2137, 2014.
dc.identifier0196-2892
dc.identifierhttp://hdl.handle.net/11449/113507
dc.identifier10.1109/TGRS.2013.2258351
dc.identifierWOS:000329527000018
dc.identifier9039182932747194
dc.description.abstractAlthough hyperspectral images acquired by on-board satellites provide information from a wide range of wavelengths in the spectrum, the obtained information is usually highly correlated. This paper proposes a novel framework to reduce the computation cost for large amounts of data based on the efficiency of the optimum-path forest (OPF) classifier and the power of metaheuristic algorithms to solve combinatorial optimizations. Simulations on two public data sets have shown that the proposed framework can indeed improve the effectiveness of the OPF and considerably reduce data storage costs.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relationIEEE Transactions on Geoscience and Remote Sensing
dc.relation4.662
dc.relation2,649
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectEvolutionary computation
dc.subjectheuristic algorithms
dc.subjecthyperspectral imaging
dc.subjectimage classification
dc.subjectpattern recognition
dc.titleNature-Inspired Framework for Hyperspectral Band Selection
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución