dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorAbdus Salaam Int Ctr Theoret Phys
dc.date.accessioned2014-12-03T13:11:25Z
dc.date.available2014-12-03T13:11:25Z
dc.date.created2014-12-03T13:11:25Z
dc.date.issued2013-10-01
dc.identifierEntropy. Basel: Mdpi Ag, v. 15, n. 10, p. 4310-4318, 2013.
dc.identifier1099-4300
dc.identifierhttp://hdl.handle.net/11449/113117
dc.identifier10.3390/e15104310
dc.identifierWOS:000328486900018
dc.identifierWOS000328486900018.pdf
dc.identifier6130644232718610
dc.description.abstractConvergence to a period one fixed point is investigated for both logistic and cubic maps. For the logistic map the relaxation to the fixed point is considered near a transcritical bifurcation while for the cubic map it is near a pitchfork bifurcation. We confirmed that the convergence to the fixed point in both logistic and cubic maps for a region close to the fixed point goes exponentially fast to the fixed point and with a relaxation time described by a power law of exponent -1. At the bifurcation point, the exponent is not universal and depends on the type of the bifurcation as well as on the nonlinearity of the map.
dc.languageeng
dc.publisherMdpi Ag
dc.relationEntropy
dc.relation2.305
dc.relation0,592
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectrelaxation to fixed points
dc.subjectdissipative mapping
dc.subjectcomplex system
dc.subjectcubic map
dc.subjectlogistic map
dc.titleRelaxation to Fixed Points in the Logistic and Cubic Maps: Analytical and Numerical Investigation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución