dc.contributorUniv Adolfo Ibanez
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Andres Bello
dc.date.accessioned2014-12-03T13:11:22Z
dc.date.available2014-12-03T13:11:22Z
dc.date.created2014-12-03T13:11:22Z
dc.date.issued2013-11-14
dc.identifierJournal Of High Energy Physics. New York: Springer, n. 11, 11 p., 2013.
dc.identifier1029-8479
dc.identifierhttp://hdl.handle.net/11449/113041
dc.identifier10.1007/JHEP11(2013)124
dc.identifierWOS:000327093100010
dc.description.abstractVertex operators in string theory me in two varieties: integrated and unintegrated. Understanding both types is important for the calculation of the string theory amplitudes. The relation between them is a descent procedure typically involving the b-ghost. In the pure spinor formalism vertex operators can be identified as cohomology classes of an infinite-dimensional Lie superalgebra formed by covariant derivatives. We show that in this language the construction of the integrated vertex from an unintegrated vertex is very straightforward, and amounts to the evaluation of the cocycle on the generalized Lax currents.
dc.languageeng
dc.publisherSpringer
dc.relationJournal of High Energy Physics
dc.relation5.541
dc.relation1,227
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSuperspaces
dc.subjectNoN-Commutative Geometry
dc.subjectConformal Field Models in String Theory
dc.subjectAdS-CFT Correspondence
dc.titleA construction of integrated vertex operator in the pure spinor sigma-model in AdS(5) x S-5
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución