dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.contributorFed Univ Technol
dc.date.accessioned2014-12-03T13:09:15Z
dc.date.available2014-12-03T13:09:15Z
dc.date.created2014-12-03T13:09:15Z
dc.date.issued2014-03-01
dc.identifierApplied Thermal Engineering. Oxford: Pergamon-elsevier Science Ltd, v. 64, n. 1-2, p. 108-116, 2014.
dc.identifier1359-4311
dc.identifierhttp://hdl.handle.net/11449/112123
dc.identifier10.1016/j.applthermaleng.2013.12.015
dc.identifierWOS:000333777000012
dc.identifier0184075204510977
dc.description.abstractThis paper compares two different thermal models by solving computationally direct-inverse problem to estimate the net heat flux and convective coefficient when milling hardened AISI H13 die steel. Global and tri-dimensional transient models were developed and solved by Finite-Volume and Gauss Methods, respectively. Two cutting speeds were considered in dry finishing operation. Experimental temperatures measured by part-embedded thermocouples fed the inverse-problem, which were compared to theoretical temperatures given by direct-problem. Both models are able to estimate the thermal properties for milling processes. Tr-dimensional model approaches global one when using mean temperature of thermocouples. The models agreed with others in the literature. (C) 2013 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationApplied Thermal Engineering
dc.relation3.771
dc.relation1,505
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectHeat transfer
dc.subjectDirect-inverse problem
dc.subjectThermal modeling
dc.subjectMilling
dc.subjectMould steels
dc.titleModeling heat transfer in die milling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución