dc.contributorUniv Laval
dc.contributorUniv Politecn Cataluna
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorCtr Rech Les Buissons
dc.contributorAgr & Agri Food Canada
dc.contributorCtr Citricultura Sylvio Moreira IAC
dc.contributorBio Soil & Crop Ltd
dc.date.accessioned2014-12-03T13:09:10Z
dc.date.available2014-12-03T13:09:10Z
dc.date.created2014-12-03T13:09:10Z
dc.date.issued2013-03-22
dc.identifierFrontiers In Plant Science. Lausanne: Frontiers Research Foundation, v. 4, 10 p., 2013.
dc.identifier1664-462X
dc.identifierhttp://hdl.handle.net/11449/112006
dc.identifier10.3389/fpls.2013.00039
dc.identifierWOS:000329582300001
dc.identifierWOS000329582300001.pdf
dc.identifier0618605154638494
dc.description.abstractTissue analysis is commonly used in ecology and agronomy to portray plant nutrient signatures. Nutrient concentration data, or ionomes, belong to the compositional data class, i.e., multivariate data that are proportions of some whole, hence carrying important numerical properties. Statistics computed across raw or ordinary log-transformed nutrient data are intrinsically biased, hence possibly leading to wrong inferences. Our objective was to present a sound and robust approach based on a novel nutrient balance concept to classify plant ionomes. We analyzed leaf N, R K, Ca, and Mg of two wild and six domesticated fruit species from Canada, Brazil, and New Zealand sampled during reproductive stages. Nutrient concentrations were (1) analyzed without transformation, (2) ordinary log-transformed as commonly but incorrectly applied in practice, (3) additive log-ratio (air) transformed as surrogate to stoichiometric rules, and (4) converted to isometric log-ratios OH arranged as sound nutrient balance variables. Raw concentration and ordinary log transformation both led to biased multivariate analysis due to redundancy between interacting nutrients. The air- and ilr-transformed data provided unbiased discriminant analyses of plant ionomes, where wild and domesticated species formed distinct groups and the ionomes of species and cultivars were differentiated without numerical bias. The ilr nutrient balance concept is preferable to air, because the ilr technique projects the most important interactions between nutrients into a convenient Euclidean space.This novel numerical approach allows rectifying historical biases and supervising phenotypic plasticity in plant nutrition studies.
dc.languageeng
dc.publisherFrontiers Research Foundation
dc.relationFrontiers In Plant Science
dc.relation3.678
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectcompositional data analysis
dc.subjectionome classification
dc.subjectnutrient interactions
dc.subjectnumerical biases
dc.subjectisometric log-ratio
dc.subjectPlant nutrition
dc.titleThe plant ionome revisited by the nutrient balance concept
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución