Tesis
Estudo de conjuntos minimais para sistemas descontínuos em dimensões 2 e 3
Fecha
2014-06-02Registro en:
EUZÉBIO, Rodrigo Donizete. Estudo de conjuntos minimais para sistemas descontínuos em dimensões 2 e 3. 2014. 134 f. Tese (doutorado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2014.
000789673
000789673.pdf
33004153071P0
6682867760717445
0000-0003-2037-8417
Autor
Buzzi, Claudio Aguinaldo [UNESP]
Universidade Estadual Paulista (Unesp)
Institución
Resumen
In this thesis minimal sets of smooth and non-smooth vector fields in dimension 2 and 3 are studied. First the study of minimal sets is restricted to limit cycles. Questions about existence, distribution and quantity of such objects in smooth and non-smooth vector fields in dimension 3 are answered. Later, the existence of non-trivial minimal sets and chaos in dimension 2 is treated for non-smooth vector fields. Some examples of non-trivial minimal sets are presented and the presence of non-deterministic chaos on some of these sets is verified. Finally, a version of the Poincaré-Bendixson Theorem for non-smooth vector fields presenting neither escaping nor sliding motion is presented Nesta tese são estudados conjuntos minimais de campos de vetores suaves e descontínuos em dimensões 2 e 3. Primeiramente, restringimos o estudos de conjuntos minimais a ciclos limite e respondemos questões sobre existência, distribuição e quantidade de tais objetos em campos de vetores suaves e descontínuos em dimensão 3. Posteriormente, abordamos a existência de conjuntos minimais não triviais e caos em dimensão 2 para campos de vetores descontínuos. Apresentamos exemplos de conjuntos minimais não triviais e verificamos a presença de caos não determinístico em alguns destes conjuntos. Finalmente, apresentamos uma versão do Teorema de Poincaré-Bendixson para campos de vetores descontínuos que não apresentam regiões de deslize e escape