dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2014-05-27T11:30:49Z
dc.date.available2014-05-27T11:30:49Z
dc.date.created2014-05-27T11:30:49Z
dc.date.issued2013-10-01
dc.identifierIEEE Transactions on Biomedical Engineering, v. 60, n. 3, p. 803-812, 2013.
dc.identifier0018-9294
dc.identifier1558-2531
dc.identifierhttp://hdl.handle.net/11449/76747
dc.identifier10.1109/TBME.2012.2187204
dc.identifierWOS:000316810900026
dc.identifier2-s2.0-84884553022
dc.identifier9039182932747194
dc.description.abstractHuman intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
dc.languageeng
dc.relationIEEE Transactions on Biomedical Engineering
dc.relation4.288
dc.relation1,267
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectImage foresting transform (IFT)
dc.subjectImage segmentation
dc.subjectIntestinal parasitosis
dc.subjectMicroscopy image analysis
dc.subjectOptimumpath forest (OPF) classifier
dc.subjectPattern recognition
dc.titleAutomatic segmentation and classification of human intestinal parasites from microscopy images
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución