Artículos de revistas
Analyzing the effect of homogeneous frustration in protein folding
Fecha
2013-10-01Registro en:
Proteins: Structure, Function and Bioinformatics, v. 81, n. 10, p. 1727-1737, 2013.
0887-3585
1097-0134
10.1002/prot.24309
WOS:000324115400005
2-s2.0-84884205766
1518826294347383
0500034174785796
Autor
Universidade Estadual Paulista (Unesp)
Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas
Universidade de São Paulo (USP)
Institución
Resumen
The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Efeito do consumo das proteínas, peptídeos e aminoácidos do soro do leite nas heat shock proteins (HSPs) e parâmetros relacionados em ratos = Effect of the intake of whey proteins, their peptides and amino acids on the heat shock proteins (HSPs) and health related parameters in rats
Moura, Carolina Soares de, 1988- -
ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence
Qiu, J.; Bernhofer, M.; Heinzinger, M.; Kemper, S.; Norambuena Arenas, Tomás; Melo Ledermann, Francisco Javier; Rost, B. (2020)