dc.contributor | Quaid-i-Azam University | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:30:35Z | |
dc.date.available | 2014-05-27T11:30:35Z | |
dc.date.created | 2014-05-27T11:30:35Z | |
dc.date.issued | 2013-09-01 | |
dc.identifier | Anais da Academia Brasileira de Ciencias, v. 85, n. 3, p. 863-872, 2013. | |
dc.identifier | 0001-3765 | |
dc.identifier | 1678-2690 | |
dc.identifier | http://hdl.handle.net/11449/76462 | |
dc.identifier | 10.1590/S0001-37652013000300002 | |
dc.identifier | S0001-37652013000300002 | |
dc.identifier | S0001-37652013000300863 | |
dc.identifier | WOS:000324948400002 | |
dc.identifier | 2-s2.0-84884235776 | |
dc.identifier | 2-s2.0-84884235776.pdf | |
dc.identifier | 8940498347481982 | |
dc.description.abstract | For a given binary BCH code Cn of length n = 2s-1 generated by a polynomial g(x)e{open}F2[x] of degree r there is no binary BCH code of length (n + 1)n generated by a generalized polynomial g(x1/2)e{open}F2[x1/2ℤ ≥ 0] of degree 2r. However, it does exist a binary cyclic code C(n+1)n of length (n + 1)n such that the binary BCH code Cn is embedded in C(n+1)n. Accordingly a high code rate is attained through a binary cyclic code C(n+1)n for a binary BCH code Cn. Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C(n+1)n, while the codes Cn and C(n+1)n have the same minimum hamming distance. | |
dc.language | eng | |
dc.relation | Anais da Academia Brasileira de Ciências | |
dc.relation | 0.956 | |
dc.relation | 0,418 | |
dc.relation | 0,418 | |
dc.rights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | BCH code | |
dc.subject | Binary cyclic code | |
dc.subject | Binary Hamming code | |
dc.subject | Decoding algorithm | |
dc.title | A decoding method of an n length binary BCH code through (n + 1)n length binary cyclic code | |
dc.type | Artículos de revistas | |