dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidad de Colima
dc.date.accessioned2014-05-27T11:30:08Z
dc.date.available2014-05-27T11:30:08Z
dc.date.created2014-05-27T11:30:08Z
dc.date.issued2013-08-12
dc.identifierApplied Mathematics and Computation, v. 221, p. 444-452.
dc.identifier0096-3003
dc.identifierhttp://hdl.handle.net/11449/76251
dc.identifier10.1016/j.amc.2013.07.004
dc.identifierWOS:000324579400042
dc.identifier2-s2.0-84881182308
dc.identifier1681267716971253
dc.description.abstractGiven a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. © 2013 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.relationApplied Mathematics and Computation
dc.relation2.300
dc.relation1,065
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectHankel matrix
dc.subjectLaguerre-Hahn class
dc.subjectLinear moment functional
dc.subjectOrthogonal polynomials
dc.subjectZeros
dc.subjectLinear moments
dc.subjectOrthogonal polynomial
dc.subjectLinear transformations
dc.subjectMatrix algebra
dc.subjectOrthogonal functions
dc.subjectMathematical transformations
dc.titlePerturbations on the antidiagonals of Hankel matrices
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución