dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:29:33Z
dc.date.available2014-05-27T11:29:33Z
dc.date.created2014-05-27T11:29:33Z
dc.date.issued2013-05-31
dc.identifierPLoS ONE, v. 8, n. 5, 2013.
dc.identifier1932-6203
dc.identifierhttp://hdl.handle.net/11449/75468
dc.identifier10.1371/journal.pone.0065587
dc.identifierWOS:000319799900212
dc.identifier2-s2.0-84878583033
dc.identifier2-s2.0-84878583033.pdf
dc.identifier8858800699425352
dc.identifier7977035910952141
dc.identifier0000-0003-3534-974X
dc.description.abstractProtein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4% and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can be a useful tool for prioritizing interactions for experimental validation. © 2013 Valente et al.
dc.languageeng
dc.relationPLOS ONE
dc.relation2.766
dc.relation1,164
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectamino acid
dc.subjectasparagine
dc.subjectcysteine
dc.subjectisoleucine
dc.subjectamino acid sequence
dc.subjectclassification
dc.subjectdecision tree
dc.subjectmachine learning
dc.subjectprediction
dc.subjectprotein protein interaction
dc.subjectstatistical analysis
dc.subjectstatistical model
dc.subjectuniversal in silico predictor of protein protein interaction
dc.titleThe Development of a Universal In Silico Predictor of Protein-Protein Interactions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución