dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.date.accessioned2014-05-27T11:29:00Z
dc.date.available2014-05-27T11:29:00Z
dc.date.created2014-05-27T11:29:00Z
dc.date.issued2013-04-25
dc.identifierActa Scientiarum - Technology, v. 35, n. 2, p. 339-347, 2013.
dc.identifier1806-2563
dc.identifier1807-8664
dc.identifierhttp://hdl.handle.net/11449/75170
dc.identifier10.4025/actascitechnol.v35i2.13547
dc.identifierWOS:000322540600019
dc.identifier2-s2.0-84876432682
dc.identifier2-s2.0-84876432682.pdf
dc.identifier1268945434870814
dc.identifier0000-0002-0968-0108
dc.description.abstractCurrent research compares the Bayesian estimates obtained for the parameters of processes of ARCH family with normal and Student's t distributions for the conditional distribution of the return series. A non-informative prior distribution was adopted and a reparameterization of models under analysis was taken into account to map parameters' space into real space. The procedure adopts a normal prior distribution for the transformed parameters. The posterior summaries were obtained by Monte Carlo Markov Chain (MCMC) simulation methods. The methodology was evaluated by a series of Bovespa Index returns and the predictive ordinate criterion was employed to select the best adjustment model to the data. Results show that, as a rule, the proposed Bayesian approach provides satisfactory estimates and that the GARCH process with Student's t distribution adjusted better to the data.
dc.languageeng
dc.languagepor
dc.relationActa Scientiarum: Technology
dc.relation0.231
dc.relation0,168
dc.relation0,168
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectARCH family
dc.subjectBayesian analysis
dc.subjectFinancial returns
dc.subjectMCMC methods
dc.titleModelos estocásticos com heterocedasticidade: Uma abordagem Bayesiana para os retornos do Ibovespa
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución