dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorUniversity of British Columbia
dc.contributorCarleton University
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:28:56Z
dc.date.available2014-05-27T11:28:56Z
dc.date.created2014-05-27T11:28:56Z
dc.date.issued2013-04-18
dc.identifierJournal of Applied Statistics, v. 40, n. 7, p. 1586-1596, 2013.
dc.identifier0266-4763
dc.identifier1360-0532
dc.identifierhttp://hdl.handle.net/11449/75134
dc.identifier10.1080/02664763.2013.789098
dc.identifierWOS:000320753900015
dc.identifier2-s2.0-84879550005
dc.description.abstractIn this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome. © 2013 Copyright Taylor and Francis Group, LLC.
dc.languageeng
dc.relationJournal of Applied Statistics
dc.relation0.699
dc.relation0,475
dc.relation0,475
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectmaximum likelihood
dc.subjectmixed model
dc.subjectmixture distribution
dc.subjectmultivariate count data
dc.subjectnegative binomial distribution
dc.subjectoverdispersion
dc.subjectPoisson distribution
dc.subjectzero-inflated data
dc.titleMultivariate models for correlated count data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución