dc.contributorFriedrich Alexander Universität Erlangen-Nürnberg
dc.contributorUniversity of Maribor
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:28:55Z
dc.date.available2014-05-27T11:28:55Z
dc.date.created2014-05-27T11:28:55Z
dc.date.issued2013-04-15
dc.identifierPhysica A: Statistical Mechanics and its Applications, v. 392, n. 8, p. 1762-1769, 2013.
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11449/75112
dc.identifier10.1016/j.physa.2012.12.021
dc.identifierWOS:000315071100006
dc.identifier2-s2.0-84873721129
dc.identifier6130644232718610
dc.description.abstractSome dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent -2. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape. © 2013 Elsevier B.V. All rights reserved.
dc.languageeng
dc.relationPhysica A: Statistical Mechanics and Its Applications
dc.relation2.132
dc.relation0,773
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectBoundary crisis
dc.subjectChaos
dc.subjectFermi-map
dc.subjectBasin of attraction
dc.subjectBasins of attraction
dc.subjectBouncing balls
dc.subjectChaotic attractors
dc.subjectDynamical properties
dc.subjectFixed points
dc.subjectParameter spaces
dc.subjectPhase spaces
dc.subjectRich structure
dc.subjectSelf-similar
dc.subjectChaos theory
dc.subjectPhysics
dc.subjectPhase space methods
dc.titleSome dynamical properties of a classical dissipative bouncing ball model with two nonlinearities
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución