Brasil | Artículos de revistas
dc.contributorUniversity of Colorado Denver
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:28:28Z
dc.date.available2014-05-27T11:28:28Z
dc.date.created2014-05-27T11:28:28Z
dc.date.issued2013-02-19
dc.identifierSoft Computing, v. 17, n. 8, p. 1393-1402, 2013.
dc.identifier1432-7643
dc.identifier1433-7479
dc.identifierhttp://hdl.handle.net/11449/74608
dc.identifier10.1007/s00500-013-1006-x
dc.identifierWOS:000321644600008
dc.identifier2-s2.0-84880844907
dc.description.abstractConstrained intervals, intervals as a mapping from [0, 1] to polynomials of degree one (linear functions) with non-negative slopes, and arithmetic on constrained intervals generate a space that turns out to be a cancellative abelian monoid albeit with a richer set of properties than the usual (standard) space of interval arithmetic. This means that not only do we have the classical embedding as developed by H. Radström, S. Markov, and the extension of E. Kaucher but the properties of these polynomials. We study the geometry of the embedding of intervals into a quasilinear space and some of the properties of the mapping of constrained intervals into a space of polynomials. It is assumed that the reader is familiar with the basic notions of interval arithmetic and interval analysis. © 2013 Springer-Verlag Berlin Heidelberg.
dc.languageeng
dc.relationSoft Computing
dc.relation2.367
dc.relation0,593
dc.relation0,593
dc.rightsAcesso restrito
dc.sourceScopus
dc.subject(standard) interval arithmetic
dc.subjectConstrained interval arithmetic
dc.subjectInterval analysis
dc.subjectInterval spaces
dc.subjectInterval arithmetic
dc.subjectLinear functions
dc.subjectNon negatives
dc.subjectQuasi-linear
dc.subjectSoft computing
dc.subjectSoftware engineering
dc.subjectPolynomials
dc.titleConstrained intervals and interval spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución