dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Federal Fluminense (UFF)
dc.contributorUniversidade Federal de Alfenas (UNIFAL)
dc.contributorUniversidade Estadual do Centro Oeste (UNICENTRO)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversity of Strathclyde
dc.date.accessioned2014-05-27T11:28:18Z
dc.date.available2014-05-27T11:28:18Z
dc.date.created2014-05-27T11:28:18Z
dc.date.issued2013-02-01
dc.identifierMathematical and Computer Modelling, v. 57, n. 3-4, p. 435-459, 2013.
dc.identifier0895-7177
dc.identifierhttp://hdl.handle.net/11449/74476
dc.identifier10.1016/j.mcm.2012.06.021
dc.identifierWOS:000311911700013
dc.identifier2-s2.0-84870532119
dc.identifier0000-0002-2080-8053
dc.description.abstractThis paper is concerned with an overview of upwinding schemes, and further nonlinear applications of a recently introduced high resolution upwind differencing scheme, namely the ADBQUICKEST [V.G. Ferreira, F.A. Kurokawa, R.A.B. Queiroz, M.K. Kaibara, C.M. Oishi, J.A.Cuminato, A.F. Castelo, M.F. Tomé, S. McKee, assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems, International Journal for Numerical Methods in Fluids 60 (2009) 1-26]. The ADBQUICKEST scheme is a new TVD version of the QUICKEST [B.P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering 19 (1979) 59-98] for solving nonlinear balance laws. The scheme is based on the concept of NV and TVD formalisms and satisfies a convective boundedness criterion. The accuracy of the scheme is compared with other popularly used convective upwinding schemes (see, for example, Roe (1985) [19], Van Leer (1974) [18] and Arora & Roe (1997) [17]) for solving nonlinear conservation laws (for example, Buckley-Leverett, shallow water and Euler equations). The ADBQUICKEST scheme is then used to solve six types of fluid flow problems of increasing complexity: namely, 2D aerosol filtration by fibrous filters; axisymmetric flow in a tubular membrane; 2D two-phase flow in a fluidized bed; 2D compressible Orszag-Tang MHD vortex; axisymmetric jet onto a flat surface at low Reynolds number and full 3D incompressible flows involving moving free surfaces. The numerical simulations indicate that this convective upwinding scheme is a good generic alternative for solving complex fluid dynamics problems. © 2012.
dc.languageeng
dc.relationMathematical and Computer Modelling
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectAdvective transport
dc.subjectBoundedness
dc.subjectCBC/TVD stability
dc.subjectConvection modeling
dc.subjectFlux limiter
dc.subjectFree surface flows
dc.subjectHigh resolution
dc.subjectMonotonic interpolation
dc.subjectNormalized variables
dc.subjectUpwinding
dc.subjectFlux limiters
dc.subjectFree-surface flow
dc.subjectComputational fluid dynamics
dc.subjectCrystallography
dc.subjectEuler equations
dc.subjectFluidized beds
dc.subjectIncompressible flow
dc.subjectInterpolation
dc.subjectLiquids
dc.subjectMicrofiltration
dc.subjectReynolds number
dc.subjectTwo dimensional
dc.subjectMagnetohydrodynamics
dc.titleApplication of a bounded upwinding scheme to complex fluid dynamics problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución